TRICHOTHECENE METABOLISM STUDIES. 2. STRUCTURE OF 3a-(1"B-D-GLUCOPYRANOSIDURONYL)-&-ISOVALERYLOXY-SCIRPEN-3,4B, 15-TRIOL 15-ACETATE PRODUCED FROM T-2 TOXIN IN VITRO

William R. Roush, *la,2 Michael A. Marletta, *lb Sandra Russo-Rodriguez la and Joanne Recchialb

Department of Chemistry and Department of Applied Biological Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

The preparation and structure determination of the title compound is described.

The epoxytrichothecene mycotoxins are a large family of fungal metabolites that exhibit a range of impressive biological activities. 3 They are potent inhibitors of protein synthesis in eukaryotes and many have been implicated in diseases of plants, animals, and humans. 3a In spite of the toxicological significance of these compounds, however, relatively little is known about their metabolic fate in mammalian systems. 4,5 We recently described the $\frac{in}{i}$ vitro production of glucuronide 2 from anguidine (1) and provided the first concrete evidence that

glucuronidation may be a significant pathway for the trichothecene metabolism $\frac{in}{in} \frac{vivo}{vivo}$. Questions remained, however, about the generality of this conclusion. Consequently we have initiated a parallel series of experiments using T-2 toxin (3) and report herein the enzymatic production and structure determination of glucuronide $\frac{4}{i}$ as the major in vitro T-2 conjugate. 6

[3 H] T-2 toxin (4.7 nM, 0.026 μCi) 7 was incubated with uridine 5'-diphosphoglucuronic acid (UDPGA, 12 mM), β-naphthoflavone-induced hepatic microsomes from male Long-Evans rats (1.2 mg protein/mL), 8 MgCl $_2$ (10 mm), and phosphate buffer (10 mM, pH 7.7) at 37°C. HPLC analysis of the mixture after 2 h indicated the presence of a new product (49%) glucuronide 4 (R $_t$ 15.5 min). 9 , 10 The same product was produced by incubation of T-2 toxin (150 μM) with [1 4C] UDPGA (0.7 μM, >180 mCi/mmole) using the protocol outlined above. Scale-up of this procedure 11 using unlabelled T-2 toxin followed by HPLC purification 10 afforded pure 4 12 (10% isolated yield).

The FAB mass spectrum 13 of 4 is consistent with a 1:1 adduct of HT-2 toxin (5) and glucuronic acid [m/e 645 (MNa $_{2}^{+}$), 623 (MNa $_{2}^{+}$), 601 (MH $_{2}^{+}$), 389 (M $_{2}^{+}$ -C₆H₉O₇-H₂O), 307 (M $_{2}^{+}$ -C₆H₉O₇-C₅H₉O₂)], a conclusion supported by 1 H NMR data which showed a single acetyl resonance. 12 Comparison of the 1 H signals for H-4 (6 4.58), H-3 (4.44) and H-15 (4.30 and 3.99) of 4 measured in MeOH-d₄ with those of authentic HT-2 toxin (5), (6 4.38, H-4; 4.10, H-3; 4.27 and 4.00, H-15) suggested that 4 is a glucuronide derivative of 5 . 14 The linkage between the trichothecene nucleus and glucuronic acid was determined by conversion to the peracetate methyl ester derivative 6 . This compound was identical to an authentic sample synthesized from T-2 toxin (3) and bromosugar 7 by a Koenigs-Knorr reaction (20% yield; 94% based on recovered T-2 toxin). Thus, the structure of this metabolite is correctly described by formula 4 .

This experiment shows that T-2 toxin or its well-known hydrolysis product HT-2 (5) are viable substrates for microsomal glucuronyl transferase. Based on our previous experience with anguidine, it is likely that T-2 toxin is hydrolyzed to HT-2 before conjugation with UDP-glucuronic acid. A Nevertheless, it is now reasonable to speculate that glucuronic acid conjugates of T-2 metabolites will be produced in vivo. Structural studies of in vivo metabolites will be reported in due course. 17

References

- 1. (a) Department of Chemistry; (b) Department of Applied Biological Sciences.
- 2. Holder of the Roger and Georges Firmenich Career Development Chair in Natural Products Chemistry, 1981-84; Fellow of the Alfred P. Sloan Foundation, 1982-86.
- (a) "Developments in Food Science, Vol. 4; Trichothecenes: Chemical, Biological, and Toxicological Aspects"; Ueno, Y., Ed.; Elsevier: New York, 1983. (b) Doyle, T.W.; Bradner, W.T. In "Anticancer Agents Based on Natural Product Models"; Cassady, J.M.; Douros, J.D., Eds.; Academic Press: New York, 1980; Chapter 2. (c) Ueno, Y. Adv. Nutr. Res. 1980, 3, 301. (d) Tamm, C. Fortschr. Chem. Org. Naturst. 1974, 31, 63. (e) Bamburg, J.R.; Strong, F.M. In "Microbial Toxins"; Kadis, S., Ciegler, A., Ajl, S.J., Eds.; Academic Press: New York, 1971; Vol. 7, p 207.
- Roush, W.R.; Marletta, M.A.; Russo-Rodriguez, S.; Recchia, J. <u>J. Am. Chem. Soc.</u> 1985, 107, 3354.
- (a) Yoshizawa, T.; Sakamoto, T.; Okamoto, K. <u>Appl. Environ. Microbiol. 1984, 47</u>, 130.
 (b) Yoshizawa, T.; Sakamoto, T.; Anyano, Y.; Mirocha, C.J. <u>Agric. Biol. Chem. 1982</u>, 46, 2613. (c) Robison, T.S.; Mirocha, C.J.; Kurtz, H.J.; Behrens, J.C.; Weaver, G.A.; Chi, M.S. <u>J. Agric. Food Chem. 1979</u>, 27, 1411. (d) Yoshizawa, T.; Takeda, H.; Ohi, T. Agric. Biol. Chem. 1983, 47, 2133. (e) King, R.R.; McQueen, R.E.; Levesque, D.; Greenhalg, R. <u>J. Agric. Food Chem. 1984</u>, 32, 1181. (f) Yoshizawa, T.; Swanson, S.P.; Mirocha, C.J. <u>Appl. Environ. Microbiol. 1980</u>, 39, 1172. (g) Yoshizawa, T.; Swanson, S.P.; Mirocha, C.J. <u>Ibid. 1980</u>, 40, 901. (h) Matsumoto, H.; Ito, T.; Ueno, Y. <u>Jpn. J. Exp. Med. 1978</u>, 48, 393. (i) Ohta, M.; Matsumoto, H.; Ishii, K.; Ueno, Y. <u>J. Biochem. (Tokyo)</u> 1978, 84, 697.
- 6. The only metabolic transformations of $\underline{3}$ documented prior to our work had been deacylation reactions catalyzed by microsomal esterases, 5^{f-1} and the P₄₅₀ mediated hydroxylation of the 3'-position. 5a, b
- We thank Dr. K. Hunter (Uniformed Services University of Health Sciences, Dept. of Defense, Bethesda, Maryland) for a generous sample of [3H] T-2 toxin.
- 8. Ryan, D.; Lee, A.Y.H.; Levin, W. In "Methods in Enzymology"; Fleischer, S., Packer, L., Eds.; Academic Press: New York, Vol. 52, pp 117-123.
- The microsomes were removed by centrifugation at the end of the incubation. The products were concentrated on a C18 Sep-Pak cartridge (Waters Assoc.) and then were separated by HPLC.
- 10. The μ -Bondapak C18 column (3.9 mm x 30 cm, Waters Assoc.) was used for all analyses and isolations (100% H₂O for 2 min, 0-45% MeOH linear ramp for 15 min., 45-60% MeOH linear ramp for 15 min., 1.5 mL/min).
- 11. UDPGA (12 mM), T-2 toxin (738 µM) and 1.22 mg/mL of microsomal protein (Sprague-Dawley rats) were incubated for 3.5 h.
- 12. Data for 4: 1 H NMR (MeOH-d₄, 250 MHz) $^{\delta}$ 5.75 (d, 1 H, J=5.6 Hz, H-8), 5.31 (d, 1 H, J=5.0 Hz, H-10), 4.68 (d, 1 H, J=7.6 Hz, H-1"), 4.58 (d, 1 H, J=3.0 Hz, H-4), 4.44 (dd, 1 H, J=3.1, 4.8 Hz, H-3), 4.30 (d, 1 H, J=12.4 Hz), 4.23 (d, 1 H, J=5.8 Hz, H-11), 3.99 (d, 1 H, J=12.4 Hz, H-15B), 3.68 (d, 1 H, J=4.9 Hz, H-2), 3.5-3.2 (m, partially obscured by solvent peak, sugar), 2.96 (d, 1 H, J=4.1 Hz, H-13A), 2.77 (d, 1 H, J=4.0 Hz), 2.38 (dd, 1 H, J=5.6, 15 Hz, H-7A), 2.05 (s, 3 H, -0Ac), 1.73 (s, 3 H, H-16), 1.00 (m, 6 H, H-4' isovalery1), 0.82 (s, 3 H, H-14); FAB mass spectrum (glycerol dispersion) m/e 645

- (MNa_2^+) , 623 (MNa^+) , 601 (MH^+) , 389 $(M^+-c_6H_90_7-H_20)$, 307 $(M^+-c_6H_90_7c_5H_90_2)$.
- 13. The FAB mass spectral measurements were performed by Dr. C. Costello and S. Maleknia using the facility supported by NIH Research Grant #RR00317 from the Biotechnology Resources Branch, Division of Research Resources (Principal Investigator: Prof. K. Biemann).
- 14. The corresponding chemical shifts for H-4 (δ 5.70), H-3 (δ 4.23) and H-15 (4.32 and 4.10) of T-2 toxin (3) indicate that H-4 is not acylated in metabolite 4.
- 15. Data for 6: mp 82-84°C; $[\alpha]_D^{20}$ 3.3° (c=0.61, CHCl₃); H NMR (CDCl₃, 250 MHz) δ 5.88 (d, 1 H, J=2.7, H-4), 5.74 (d, 1 H, J=5.8 Hz, H-8), 5.25 (m, 3 H, H-8 and 2 sugar H's), 5.10 (m, 1 H, sugar), 4.79 (d, 1 H, J=7.5 Hz, H-1"), 4.32 (dd, 1 H, J=2.6, 5.0 Hz, H-3), 4.26 (d, 1 H, J=12.7 Hz, H-15A), 4.16 (d, 1 H, J=5.9 Hz, H-11), 4.07 (d, 1 H, J=12.6 Hz, H-15B), 3.97 (d, 1 H, J=9.7 Hz, H-5"), 3.73 (d, 1 H, J=5.0 Hz, H-2), 3.71 (s, 3 H, -CO₂Me), 3.04 (d, 1 H, J=3.8 Hz, H-13A), 2.77 (d, 1 H, J=3.9 Hz, H-13B), 2.36 (dd, 1 H, J=5.8, 15.2 Hz), 2.11-2.0 (5s, 15 H, -OAc), 1.74 (s, 3 H, H-16), 0.95 (m, 6 H, H-4'), 0.71 (s, 3 H, H-14); IR (CHCl₃) 2950, 1750 (br), 1430, 1365, 1210 (br), 1030 (br) cm⁻¹; FAB mass spectrum (DMSO/glycerol dispersion) m/e 783 (MH⁺), 317 (C₁₃H₁₇O₉⁺, sugar); EI mass spectrum m/e 767 (M⁺-CH₃), 698 (M⁺-C₅H₈O), 680 (M⁺-C₅H₁₀O₂); high resolution mass spectrum, calcd for C₃₂H₄O₁₆ (M⁺-C₅H₁₀O₂) 680.2316; Found, 680.232 ± 0.001.
- Bollenback, G.N.; Long, J.W.; Benjamin, D.G.; Lindquist, J.A. <u>J. Am. Chem. Soc.</u> 1955, 77, 3310.
- 17. This research was supported by the U.S. Army Medical Research and Development Command (Contract DAMD 17-82-C-2235).

(Received in USA 11 July 1985)